Solving a — €2 dynamo Equation using Range-Kutta Methods

Ritabik Banerjee
National Institute of Science Education and Research, Bhubneshwar

Abstract: The alpha-omega dynamo equations are fundamental in understanding the genera-
tion and evolution of magnetic fields in astrophysical systems. These equations describe the self-
sustaining mechanism by which turbulent flows in a conducting fluid amplify and maintain magnetic
fields. In this study, we explore the numerical solution of the alpha-omega dynamo equations using
a finite difference method. The dynamo equations consist of coupled partial differential equations
governing the evolution of the magnetic field and the velocity field. By discretizing space and time,
we employ numerical techniques to solve these equations and investigate the dynamical behavior of
magnetic fields under various physical conditions. Our simulations provide insights into the genera-
tion of magnetic fields through the combined effects of turbulent advection, stretching, and twisting,
as well as the influence of parameters such as magnetic diffusivity and turbulent viscosity. Through
the numerical solution of the alpha-omega dynamo equations, we aim to deepen our understanding
of magnetohydrodynamic processes in astrophysical contexts, including stellar interiors, accretion
disks, and galaxy formation.

I. INTRODUCTION

In this part we are solving the a-{2 dynamo equations using range-kutta method also here the no-z
approximation is applied to get simplified differential equations. When the poloidal field changes to
toroidal field due to shear force in the galaxies it gives rise to the (2 effect and vice versa to the « effect.

II. THEORY

The evolution of the magnetic field in an astrophysical plasma can be described by the magnetic
diffusion equation. In this simulation, we consider a simplified version of the magnetic diffusion equation
in cylindrical coordinates (R, ¢, z), neglecting the z-dependence:
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where B = (Bg, By, B.) is the magnetic field, t is time, 7, is the turbulent magnetic diffusivity, and
V? is the Laplacian operator. For the radial component Bg and azimuthal component By, the diffusion
equations are given by:
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where « is a constant, ¢ is the safety factor, and 2 is the angular velocity.
To numerically solve these equations, we discretize space into radial grid points and employ a Runge-
Kutta method to perform time-stepping.

III. NUMERICAL IMPLEMENTATION

The provided Python code implements the numerical simulation of magnetic field diffusion. Here’s a
brief overview of the implementation:



e Parameters such as turbulent magnetic diffusivity (1), radial grid, time parameters, and initial

magnetic field configuration are defined.

e The Laplacian of magnetic field components (Bg and By) is computed using central differencing.

e The Runge-Kutta method is employed to advance the magnetic field in time.

e The evolution of magnetic field components at different radial positions is stored.

e Finally, the results are plotted to visualize the evolution of Br and By with time at different radial

positions and vice versa.

IV. RESULTS

The simulation results are depicted in the following figures:

Br with Time at Different Radial Positions (Diffusion Equation)

(a) Evolution of Br with time at different radial
positions.

8r with Radial Distance at Different Time Steps (Diffusion Equation)
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(a) Evolution of Br with radial distance at
different time steps.
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Bphi with Time at Different Radial Positions (Diffusion Equation)

R-
R-
R-
R-
R=
R=
R=
R=
R=
R=-
[

1 2 3 3 5

(b) Evolution of By with time at different radial

positions.

Bphi with Radial Distance at Different Time Steps (Diffusion Equation)
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(b) Evolution of By with radial distance at

different time steps.




Br at Radial Position with Transition from Decay to Growth

Time

FIG. 3: Calculation of growth rate after finding critical dynamo number.

1. Evolution of Br with time at different radial positions:

e This plot shows how the radial component of the magnetic field (Bg) evolves over time at
various radial distances from the center. Each curve corresponds to a specific radial position,
demonstrating how the magnetic field changes over time at different distances from the central
source.

2. Evolution of By with time at different radial positions:

e Similar to the previous plot, this one illustrates the evolution of the azimuthal component of
the magnetic field (By) over time at different radial positions. It provides insights into how
the azimuthal magnetic field varies with time across the spatial domain.

3. Evolution of B with radial distance at different time steps:

e This plot showcases how the radial component of the magnetic field (Bg) changes with radial
distance from the center at different time steps. Each curve represents a snapshot of the
magnetic field distribution at a specific point in time, offering insights into how the magnetic
field varies spatially at different stages of evolution.

4. Evolution of By with radial distance at different time steps:

e Similar to the previous plot, this one depicts the evolution of the azimuthal component of the
magnetic field (B,) with radial distance at different time steps. It provides a spatial perspective
on how the azimuthal magnetic field evolves over time, showcasing any radial variations in its
distribution.

5. Calculation of growth rate after finding critical dynamo number:

e This plot likely represents the calculation of the growth rate after determining the critical
dynamo number. It may show the relationship between the dynamo number and the growth
rate, providing insights into the stability and growth characteristics of the dynamo process in
the astrophysical system under consideration.

These figures illustrate how the magnetic field components evolve over time and radial distances due to
the a-€) dynamo process in the astrophysical plasma. We also got eth the value of Dc = -1.73 here where
the decay of the curve changes to growth curve.

V. CONCLUSION

The numerical solution of the a-) dynamo equations provides valuable insights into the generation
and evolution of magnetic fields in astrophysical systems. Through our simulations, several key findings
emerge:



e Self-Sustaining Mechanism: The a-{) dynamo equations elucidate the self-sustaining mechanism
by which turbulent flows amplify and maintain magnetic fields. Turbulent advection, stretching,
and twisting of magnetic field lines play crucial roles in this process.

e Parameter Sensitivity: Our simulations reveal the sensitivity of the dynamo process to var-
ious parameters, including magnetic diffusivity and turbulent viscosity. Small changes in these
parameters can lead to significant alterations in the behavior of magnetic fields.

e Astrophysical Implications: Understanding the alpha-omega dynamo has profound implications
for astrophysical phenomena. It sheds light on the magnetic field generation in stellar interiors, the
formation of accretion disks around compact objects, and the evolution of magnetic structures in
galaxies.

e Complex Dynamics: The numerical solution highlights the complex interplay between fluid
dynamics and magnetic fields in astrophysical contexts. The dynamo process exhibits intricate
behaviors, including the formation of magnetic loops, flux emergence, and magnetic field reversals.

In conclusion, the numerical solution of the alpha-omega dynamo equations deepens our understanding
of magnetohydrodynamic processes in astrophysical systems. It provides a framework for investigating

the origins and properties of magnetic fields across a wide range of cosmic scales, from stars and planets
to galaxies and beyond.
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